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Abstract

Morphological associative memories are a recent development in the field of artificial neural feed-
forward networks. The underlying computation of morphological associative memories is based on
lattice algebra. Lattice algebra uses the operations of minimum or maximum together with addi-
tion, instead of addition and multiplication commonly employed in traditional models of associative
memories. In comparison with associative memories based in the Hopfield recurrent network model,
morphological associative memories have bigger storage capacity for exemplar patterns and possess
better recall capabilities of non-boolean patterns degraded by erosive and dilative noise. Key notions,
such as, kernels, morphological independence and minimal representantions are introduced in order to
recall stored patterns distorted by random noise.

1 Introduction

The purpose of the present paper is to introduce novel concepts in the theory and applications of mor-
phological associative memories (MAM's) as a new mathematical technique for storing image patterns
and recalling degraded input versions of the stored patterns. In Section 2, we discuss some concepts
and operations of matrix lattice algebra that form the basis for the morphological associative memories.
MAM'’s are defined in a similar way to the classical method of correlation encoding. Section 3 describes the
fundamentals of morphological associative memories and their application to the restoration of degraded
non-boolean patterns by erosive and dilative noise. In Section 4 the key concepts of morphological strong
independence and minimal representantions are defined and used for dealing with non-boolean patterns
corrupted with random noise. Section 5 gives the conclusions to the present work.

2 Matrix lattice algebra

The basic numerical operations of taking the maximum or minimum of two numbers usually denoted
as functions max(z,y) and min(z,y) will be written as binary operators using the “join” and “meet”
symbols employed in lattice theory (1], i.e., 2 Vy = max(z,y) and = A y = min(z, y); since both operators
are associative, we will use the following symbols to represent the maximum and minimum of a finite set
of real numbers {z),... ,Zn}

V I = ma(xn{xi} and /\ Ii= lg‘!ié‘n{xi}' (1)
. l —-— ==
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It was shown in (2, 11] that the algebraic systems (R-oo, V- +) a_"_d (R+°°!A'+’2 are semirings for
corresponding max-V. min-A operations and their respective additions, + a.nd +' over the sets R_
RU{—00} and Reo = RU{+0c}, and that (Rico, V. A, +,+') is & bounded lattice-group or bounded I-gr,,

where Rioo = RU {~00, +00} is the set of extended real numbers. _ . _
" Many popular models of associative memories allow for a formulation using matrices [6, 7, 4, 9].

model of associative memories described in this paper can also be expressefi using. matrix' products.
R denote the set of real numbers. For an m x p matrix A and a p x n matrix B with entries from R,

matrix product C = AR B, also called the maz product of A and B, is defined by

P
cj = V(a:k + b;)-
k=1

The min product of A and B is defined in a similar fashion. Specifically, the i, jth entry of C = AmB

given by

p
ciy = N\ (@ix + bj)-
k=1
Note that these matrix products are of the same form as regular matrix products with th-e role of addition
and multiplication replaced by the operations of maximum (or minimum) anc! gdd:thtl_, r&spectwe]y.
The addition of two matrices is replaced by the operation of maximum (or minimum) in this matrix

algebra. Specifically, the maximum of two matrices replaces the usual matrix addition of lines.n' algebra.
Here the i, jth entry of the matrix C = AV B is given by ¢;; = ai; V b;j. Similarly, the minimum
two matrices C = A A B is defined by c;; = aij A bi;. The morphological outer product of two vectors

x = (£1,...,2Zn) ER" and y = (y1,--- ,Um)' € R™ is defined as
nm+z o ntIn

yxx' = : . :
Yym+T1 * Ym+ITn

It is worthwhile to note that y x ¥’ = y®@x' = y@x’. Finally, we say that A is less or equal than.
denoted by A < B, and A is strictly less than B, denoted by A < B, if and only if for each corresponding

entry of these matrices we have that a,; < b;, and a,;j < b;;, respectively.

3 Morphological associative memories

3.1 Background
One of the first goals achieved in the development of morphological neural networks was the establishment
of a morphological associative memory network (MAM). In its basic form, this model of an associativé
memory resembles the well-known correlation memory or linear associative memory [6]. As in correlstion
encoding, the morphological associative memory provides a simple method to add new associations- A
weakness in correlation encoding is the requirement of orthogonality of the key vectors in order to exhibit
perfect recall of the fundamental associations. The morphological auto-associative memory does not
restrict the domain of they key vectors in any way. Thus, as many associations as desired can be encoded
into the memory [12].

In the real number case, the capacity for a memory of length n can be as large as desired. That is, if
k denotes the number of distinct patterns of length n to be encoded, then k is allowed to be any integer
no matter how large. Of course, in the binary case, the limit is k = 2" as this is the maximum number of
distinct patterns of !gngth n. In comparison, McEliece et al. showed that the asymptotic limit capacity o
the Hopfield associative memory is n/2logn if with high probability the unique fundamental memory is t¢
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be recovered, except for a vanishingly small fraction of fundamental memories [8]. Likewise, the information
storage capacity (number of bits which can be stored and recalled associatively) of the morphological auto-
associative memory also exceeds the respective number of certain linear matrix associative memories which
was calculated by Palm [10]. Among the various auto-associative networks the Hopfield network is the
most widely known today [4, 5]. Unlike the Hopfield network, which is a recurrent neural network, the
morphological model provides the final result in one pass through the network without any significant
amount of training. Ritter, Sussner, and Diaz de Leon used a number of experiments to demonstrate the
MAM’s efficiency to deal with either dilative (additive) or erosive (subtractive) changes to input (binary)
patterns, including incomplete patterns [12]. Thus, the morphological associative memory model provides
almost all the characteristics of an ideal associative memory with one notable exception: the network's
inability to deal with patterns which contain both erosive as well as dilative noise.

Henceforth, let (x!,y'),..., (x*,y*) be k vector pairs with x¢ = (z£,...,z{)’ € R® and y¢ =
(Wh,... .08 €eR™ for€=1,... k. Fora given set of pattern associations {(x{,y¢) : € = 1,... ,k} we
define a pair of associated pattern matrices (X,Y), where X = (x!,... ,x*) and Y = (y!,... ,y¥). Thus,
X is of dimension n x k with i, jth entry zJ and Y is of dimension m x k with i, jth entry vl

The earliest neural network approach to associative memories was the linear associative memory or
correlation memory [6]. In this approach the goal is to store k vector pairs (x!,y!),... ,{(x* y*) in an
m x n associative memory W such that for any given input vector x¢, the associative memory W recalls
the output vector y¢ = Wx¢, V€ =1,... k. The simplest solution for this goal is to set

k
W= vty (5)
=1

In this case, the i, jth entry of W is given by wj = '22‘:1 yfzf. If the input patterns x!,... ,x* are
orthonormal, then

Wit = y8((x!) ox) + Y y7((x7) oxé) = y£. (6)
1#§
Thus, we have perfect recall of the output patterns y*,...,y*. If x!,...,x* are not orthonormal (as

in most realistic cases), then filtering processes using activation functions become necessary in order to
retrieve the desired output pattern.

3.2 Definitions and properties

Morphological associative memories are surprisingly similar to these classical correlation memories. With
each pair of pattern associations (X,Y) we associate two natural morphological m x n memories Wxy
and Mxy defined by

% k
War = Al x (x] ¢ b = \/ 1% x (), Y
£=1 §=1

Note the similarities between the definition of the memory given by Eq.(5) and those defined by Eq.(7).
Also, a consequence of Eq.(7) is that

Wxy®BX <Y < Mxy®X. (8)

A fundamental relationship between the canonicel MAM'’s and other morphological associative memories
is given by the next theorem which was proved in [12].
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Theorem 3.1. Let (X.Y) denote the associate sets of pattern vector pairs. Whenever there exists pq
recall memories A and B such that A@x¢ = y¢ and BAx¢ = y¢ for £ = 1,... ,k, then
A< Wxy <Myy < B and
VE, Wxymx¢ =y¢ = MxyBxt. P

Hence, Wy is the least upper bound of all perfect recall memories involving the @ operatiop, ..
My is the greatest lower bound of all perfect memories involving the (Y operation. Furthermore, if the,
exists perfect recall memories, then the canonical memories are also perfect_recall memories. If x -
(i.e.. v€.x¢ = y£). then we obtain the morphological auto-associative memories Wx x and My x. I I

we proved that
Wyx@X =X = Mxyx@X, (10.

where X can consist of any arbitrarily large number of pattern vectors. For example, consider the se,

Figure 1: The seven patterns in the top row were used in constructing the memories Wxx and Mxx (of sizx
2500 x 2500). The bottom row shows the output for these morphological autoassociative memories when presented

with the respective patterns in the top row.

pattern images p'.... .p” shown in Fig.(1). Each pf is a 50 x 50 pixels 256-gray scale image. For
uncorrupted input, perfect recall is guaranteed if we use the memory Wy x or My x. Using the standard
row-scan method, each pattern image pf can be converted into a pattern vector x§ = (:rf, .. ,Igsog) by
defining
(1)

.’l'gotr_”_(_ =pi(r.c) forr.e=1,...,50.

3.3 Erosive and dilative noise

Morphological associative memories are extremely robust in the presence of certain types of noise, missing
data, or occlusions. We say that a distorted version X7 of the pattern x” has undergone an erosit
r'lufngc whenever X» < x” and a dilative change whenever x? > x7. Corrupting the patterns x¢ with
30% randomly generated erosive and dilative noise with an inten;ity level of 128 results in almost perfect
recall (NMSE < 107)! when using the memory Wy x and My x, respectively. Figs.(2)-(3) provide for3
visual f‘XﬂIllp](’ of this experiment. The reason for the robustness of associative memories in the presencé
of erosive or dilative noise is a consequence of the following theorem which was validated in [12].

.'.Fh:oret;) 3.2. Let X denote the distorted version of the pattern x*. Then Wyy@x> = y” if and only
1T V3= lies., n

m

! - 9

HsoivA LV {y? ~yf+ 15] (12
=1 \€#9

l\' . N 3 £,2 £\2
oarma *d mea square Ic ampu { d
hl.( 1 mean s ire error, com L '(’d or e'l(fh E as E : (J - I ) E : (1 )
£ At 7 S A |
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Figure 2: Top row: corrupted input patterns (erosive change); bottom row, the corresponding recalled patterns
using the morphological memory Wx x.

Figure 3: Top row: corrupted input patterns (dilative change); bottom row, the corresponding recalled patterns
using the morphological memory Mx x.

and for each row index i € {1,...,m} there exists a column index j; € {1,... ,n} such that
z) =z] Vv V [u:’ -yt +I§.] ; (13)
E#y

A similar result holds for the memory Mxy by changing the inequality sign and the operations of
maximum and minimum in Egs. (12)-(13). The next corollary is an easy consequence of this theorem
(14].

Corollary 3.3. Suppose that X?denotes an eroded version of x?. The equation Wx x @%” = x” holds if

and only if for each row index i € {1,... ,n} there exists a column index j, € {1,...,n} such that
g Ry £ £
T =z V V [x;’ - T +.EJ-I] . (14)
§#7

A similar result holds for the memory Mxx by changing the maximum operator by the minimum
operator in Eq. (14).

Although Theorem 3.2 and its Corollary 3.3 provides necessary and sufficient conditions for the bounds
of the corruption of the pattern x* that guarantees perfect recall, it also implies that Wxx will fail if
dilative noise not satisfying these bounds is present. Insertion of only minute amounts of dilative noise,
often in only one vector component, can result in complete recall failure. Similar comments hold for the
memory My x and erosive noise. Hence, neither memory Wx x or My x is useful in the presence of random
noise which, generally, consists of both erosive as well as dilative noise.

The kernel method proposed in [14, 12] suggests a solution to this dilemma. However, it became clear
that finding an algorithmic method for selecting an optimal set of proper kernels was not going to be
an easy task. Part of the difficulty is due to the fact that the existence of proper kernels for a given
set of pattern vectors remains an unsolved problem if the definition of kernels proposed in [12] is used.



|/

G. X. Ritter and G.Urcid S.

i i introduced the notion of minimal representations of ¢
More recently, Ritter, U:f;)d,;nd(:ﬁlg?:; t[;: ]cz:::pt. of kernels they illustrate that kernels can be e
nonhboo’“".lg?ne::s aI}]mlo“;ical associative memories that are robust in the presence of both er
Zisiiifroerr:);lse.uixgl ordrepr to deal with the problem' qf random noitseé.we introduce,
notions of morphological independence and of minimal representations.

Xempla,
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in the next section, th,

4 Morphological independence and minimal representations

4.1 Background

N St ted by erosive noise and M x is suitable for recogniz.
?ince Wxx is Smtaliiif%r rﬁi%:::lﬁiizt:f?:&?:ir\f idea IJ; to process a noisy version X7 of x? containing
lt?ogt}lx)ittr:sri?vse?r:;u clijilativ: noise through a combination of Wxx and Mxx. Sussner prg:edhthat passing
the output of Mxx@X through the memory Wxx or, dually, the output of u}:x x Bx :l ;)OUgRl" Mxx

: ally, not result in x7 [14]. Nevertheless, the modified kernel approach proposed by Ritter et
“;n" g:)l:;d g‘;l this intuitive idea using the memories Mxx and Wxx in sequence in order to create a
al. lsh logical memory that is robust in the presence of random noise, even in the general s;t.uatlon w'here
io;pyo ac;lgcll X and Y are not boolean [12]. The underlying idea is to define a memory M ?vhxch associates
with each input pattern x” an intermediate pattern 7. Another associative memory W is defined which

associates each pattern z” with the desired output pattern y”. In terms of min-max products, one obtains
the equation:

waMBx)=y’. (15)
Obviously, if Z is a kernel for (X,Y) and 27 < X7 < x7, then
2 =Mzz;02" < MzzB%X" < MzzBx" =27 (16)

and, hence, Mzz@xX" = z7. Thus, for eroded versions of x7 that are bounded below by z7 < X7 we are
guaranteed that

Wzy B(MzzBX") = y". (17
Sussner showed the following fundamental result regarding kernels for binary patterns [14].

Theorem 4.1. Let X,Y and Z be sets of binary patterns with Z <X.If

VE# 7, 2" Az =0and 27 ¢ x¢, (18)
then Z is a kernel for (X.Y).

4.2 Morphological independence

Various attempts at generalizing this result to the non-boolean case have been unsuccessful. The failure
has been due to the fact that in the boolean case the

condition specified by Eq.(18) in Theorem 4.1 is
implied by the notion of morphological independence and results in a kernel. As it turns out, the same
is not true in the non-boolean case. A consequence of Sussner’s theorem is that for a morphologically
independent set of binary patterns X, a kernel set Z for (X.Y') can now be easily chosen. The requirement
of morphological independence is not nearly as restricti

ve as linear independence. Formally. we have:
Definition 4.1. A set of pattern vectors X =

xt, oo x%) is said to b j independent if
and only Efor ym L, ( .x") is sai e morphologically indepe

x? £ Vx‘.

(19)
€#9
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It is worthwhile to note the resemblance between morphological independence and linear independence.
In linear independence, no vector of a set can be a linear sum of the remaining vectors, while in morpholog-
ical independence, no vector can be less than the maximum of the remaining vectors. This resemblance is
due to the algebraic similarity between linear algebra and lattice algebra, where the operation of summation

replaced by the operation of maximum and equalities are replaced by appropriate inequalities. We need
to mention that morphological independence is a completely different concept than the notion of linear
independence in minimax algebra proposed by Cuninghame-Green [3]. A vector can be morphologically
independent but not linearly independent as defined by Cuninghame-Green, and vice-versa.

Thus, for example, the set of pattern images shown in Fig.(1) is morphologically independent. It follows
from the definition that if X is morphologically independent, then there must be an index j, € {1,...,n}
such that zi < z] VE# . Hence, X7 £ x¢ V€ # «. However, the converse does not hold. As mentioned
earlier, if X is morphologically independent, then it becomes easy to define a set of patterns Z < X that
satisfies Eq.(18) of Theorem 4.1. For each v € {1,... ,k} we simply pick the index j, € {1,...,n} for
which :.':5T < :x:;!’1 V€ # v and define z7 by setting

T . . 3
v_ | %, ifi=j,
% { 0if i # jo (20)

fori=1,...,n. It follows that z7 Az¢ = 0 and z7 £ x¢ V £ # . If X is also boolean, then it follows from
Theorem 4.1 that Z is a kernel for (X,Y). However, in our construction of Z we did not assume that X
was boolean. ;

Consider again the pattern images given in Fig.(1), which are morphologically independent. Table 1
gives the row indexes j, for ¥ = 1,...,7 such that :c}" >z} VE# 7. Using these values of j,, the matrix
Z was generated using Eq.(20) to test if it resulted in a kernel; Fig.(4) shows in visual form the pixel

position corresponding to each pattern row index j = j, However, Z is not a kernel since the min product

Table 1: Row index j, pixel position (r,c), and value (underscored) :r:}' of each pattern « used to build
matrix Z.

3 (ryc) 1 2 3 4 5 6 7
1759 (36,9) 255 141 165 94 142 159 196
453 (10,3) 25 255 71 164 136 101 184
2358 (48,8) 233 205 237 163 192 116 107
260 (6,10) 20 56 62 255 134 105 44
2186 (44,36) 175 112 102 89 255 173 200
737 (1537) 195 70 96 116 136 255 164
1276 (26,26) 208 46 199 153 159 176 251

N LW =

Figure 4: Top row: morphologically independent patterns; bottom row, the corresponding non-zero entries
in matrix Z used as a candidate kernel.
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MzzBX # Z: also, the max product Wxx®(Mzz@X) # X. Partial reconstruction and the effect of
crosstalk noise between patterns for perfect input is shown in Fig.(5); direct computation of Wzx ™2 is
also different from X and visually the output is similar to the bottom row of the same figure.

Figure 5: Middle row: output of memory Mzz when presented with the morphologically independent set
shown in the top row; bottom row, output of combined memory scheme Mzz — Wy X-

Definition 4.2. A set of pattern vectors X = (x!,... ,x¥) is said to be morphologically strongly indepen-
dent if and only if the following two conditions are satisfied for all £ # ~¥:

1. For each y € {1,...,k}, x7 £ x¢,
2. For each v € {1,... ,k} there exists an index j, € {1,... ,n} such that

3
%5s

-zf <z] -2, Vi=1,...,n (21)

The notions of morphological independence and strong independence are, generally not equivalent.
However, if X is morphologically independent, then X satisfies Condition 1 of strong morphological inde-
pendence. Also, we have shown previously, that if X is morphologically independent, then ¥y = 1,... ,k
there exists an index j, € {1,...,n} such that :z:g1 < 3;1 V€ # 7. As it turns out, the same property also
holds for morphologically strongly independent sets. The proof of the following theorems appears in (13],

Theorem 4.2, Morphological strong independence implies morphological independence.

Theorem 4.3. Suppose X is boolean. Then X is mor

phologically independent if and only if X is mor-
phologically strongly independent.

Minimal Representations and Kernels

roadblock in obtaining meaningful kernels in the non-boolean case is the overly restrictive requirement
that Mzz®xY = 27. However, if we simply require that there exists a memory W such that

WR(MzzBx") =y, (22)

which agrees with our original intuitive
some intermediate pattern, then several
boolean patterns. We therefore suggest
the concept of a minimal representation:

idea expressed by Eq.(15), namely that Mzz@x" need only be
results that mirror Sussner’s theorem can be obtained for non-

—— .-

P Y .
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Definition 5.1. Let Z = (z!,...,2*) be an n x k matrix. We say that Z is a kernel for (X,Y) if and
only if Z # X and there exists a memory W such that

WR(MzzAx") = y7. (23)
If Y = X, then we say that Z is a kernel for X.

Definition 5.2. A set of patterns Z < X is said to be a minimal representation of X if and only if for
A= Lyses iR

1. Z’/\zc =0v£ #71
2. z" contains at most one non-zero entry, and
3. WzxMz? =x7.

Condition 1 of this definition satisfies part of Eq.(18) of Sussner’s theorem while Condition 2 assures
sparsity. Condition 3 simply says that X can be reconstructed from Z. In this sense Z acts as an
orthogonal basis within the lattice algebra underlying the morphological operations.

There is an obvious close connection between kernels and minimal representations. If Z is a kernel
for X in the sense of Definition 4.1, then Z < X, Mzz@xY = z7, and Wzx® 2" = x7. Thus, kernels
satisfy Condition 3 of minimal representations. But from examples given in [12], kernels need not satisfy
Conditions 1 and 2 of minimal representations. We now consider the converse, namely for what pattern
sets do there exist minimal representations that may also serve as kernels. In the remainder of this section
we assume that pattern features are non-negative, i.e., z] > 0 Vo and Vi.

Theorem 5.1. If X is morphologically strongly independent, then there exists a set of patterns Z < X
with the property that for y=1,... ,k

1. 27 AZE =0 VE #£ 7,
2. z7 contains at most one non-zero entry, and
3. Wxx®@2z" =x7.
The next corollary is an easy consequence of this theorem.
Corollary 5.2. If X and Z are as in Theorem 5.1, then Z is a minimal representation of X.

Suppose X and Z are as in Theorem 5.1 and u” = Mzz@x". Then for each i =1,... ,n we have that

n
u] = (Mzz@x"); = \ (mij +2]) Smis + 2] =z} (24)
j=1
since m;; = 0. Hence u" < x7 for each y =1,... ,k. Since z7 < x7, it now follows that
2" = MzzWz" < MzzBx" <x". (25)

In view of Theorem 5.1 and Eq.(25) we have

X" =Wxx®@z" = Wxx® (Mzz0z") ;
< Wxx® (MzzBx") <Wxx®8x" =x". (26)

Therefore,
Wxx® (MzzBx") =x"Vy=1,...,k. (27)

By letting W = Wx x the preceding argument verifies the following corollary:
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Corollary 5.3. If X and Z are as in Theorem 5.1, then Z is a kernel for X.

According to Corollary 5.2, a minimal representation is also a kernel. Hence, for a set of gattems X
to be reducible to a kernel, it is sufficient that X is strongly independent. Furthermore, if X is strongly
independent, then in order to obtain a kernel one simply selects a minimal representatior? Z of X using
the method given in the proof of Theorem 5.1. Given a minimal representation _Z which is also~a kernel
for X and a noisy version X? of the pattern x” having the property that z7 < X” and Mzz X" < x7,
then it must follow that

Wxx®@ (Mzz@X") = x". (28)

The pattern images p',... ,p’ of Fig.(1) were slightly modified so that the new set of patterns is morpho-
logically strongly independent; Table 2 gives the list of the corresponding indexes where the pixel value for
each pattern 7 in row j = j, was taken to be the maximum (white) and for £ # v the minimum (black)
was assigned. Matrix Z was again defined according to Eq.(18) and applying the results established in
Theorem 3.1 and Corollaries 5.2 and 5.3, Z is a minimal representation as well as a kernel respectively;
Fig.(6) shows the morphologically strongly independent set of patterns and the associated minimal repre-
sentation given by (z!,...,z°). Randomly corrupting the patterns shown in Fig.(6) with 30% of noise

Table 2: Row index j, pixel position (r,c), and value (underscored) :z:;? of each pattern 4 used to build
matrix Z.

Y _J (r,c) 1
1 2463 (50,13) 255
2 1845 (3745) O
3 2430 (49.30) O
4 65 (215 0
5 112 (312) O
6 2466 (50,16) O
7 14 (1,14 0

(=4
OOQOOlg:OM
]

[yl
OOOIMQOOA
N

Figure 6: Top row: morphologically strongly independent patterns: bottom row, the corresponding non-
zero entries in matrix Z used as a minimal representation or kernel.

with an intensity level of 128, and using the minimal representation Z as our kernel set, we obtained the
perfect recall Wx x @ (Mzz@®X") = x? for y = 1.... .7 shown in Fig.(7).

As we have observed earlier, for a set of patterns X to be reducible to a kernel, it is sufficient that
X is strongly independent. Strong independence, however, is not a necessary condition. The question
of necessary and sufficient conditions for the existence of kernels remains open. The condition that
Wxx 0 2z = x" is crucial in our proof of the kernel scheme

input — Mzz — Wy x — output. (29)
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Figure 7: Top row: corrupted input patterns (random noise); bottom row, perfect recall using the kernel
Z for the memory scheme Mzz — Wx x (also the output of memory Wzx).

In order to prove Condition 3 of Theorem 5.1, we had to use the fact that X is strongly independent. Thus
far we have been unable to weaken the hypothesis of strong independence. There is a good reason why
minimal representations are the preferred kernels for the recovery of patterns from noisy inputs. Recall
that Eq.(28) will be satisfied whenever -

z] < i] and (Mzz@®X"); < 2] (30)

Vi = 1,...,n. Now, if for some i the i, jth entry of Mzz is zero for every j = 1,...,n, then Eq.(30) is
satisfied for this particular index i as long as

N\ <4l (31)

This claim follows from the fact that since m;; = V:=1(zf - zf-) =0foreveryj=1,...,nand Z is a

minimal representation, we must have that zf =0 for every £ = 1,... , k. Hence, z] =0<z] and
n n
(Mzz@x"); = \(mi; +2]) = \ 2. (32)
i=1 i=1

Due to the lower bound given by Eq.(31), components of x” can be arbitrarily corrupted and still satisfy
Eq.(30) for the given index i as long as there exists at least one index j € {1,...,n} such that Z] < z].
In many cases, Eq.(30) is automatically satisfied for a large number of indices { whenever Z is a minimal
representation. These cases occur when k < n as, for example, in the case of the seven image patterns
shown in Figs.(1) or (6) where k = 7 « 2500 = n. If n is large and k < n, then n — k, which is the
cardinality of the set I = {i: zf =0Vé =1,...,k}, is also large. Since m;; = V§=1(z,§ - zf-) and zf- >0
for at most one £, we have that m;; = 0 for every j =1,...,n whenever i € I. This means that Mzz
contains n — k rows having only zero entries. Hence Eq.(30) is satisfied for at least n — k indices 2.

Although Eq.(30) is guaranteed to be satisfied for at least n — k indices 3, the likelihood that it is
satisfied for the remaining k indices is also very high. Since Z is a minimal representation, the inequality
z] =0 < z] is guaranteed for all ¢ except one. The only time the inequality may not hold is in the event
that for one single index j,, Z]. < z] = z] . The probability of this event occurring becomes small as
n increases. Also, since Mzz acts as an erosive memory in that Mzz@x7 < x7, the expectation that
(Mzz@mx"), < z] is dramatically enhanced for large n.

6 Conclusions
In this paper we describe a new technique for recalling stored patterns from noisy input patterns using

morphological associative memories. We define the notions of morphological independence, strong inde-
pendence, and minimal representations of patterns sets. We also refined the notion of kernels. Our new



38 G. X. Ritter and G.Urcid S.

notion of kernels generalizes the original concept of kernels and provides the major tool for dealing with
noisy input pattern when using morphological memories. We established theorems that provide for the
existence of minimal representations for strongly independent sets of patterns. We proved that these min-
imal representations are also kernels and provided the rationale for the preference of these type of kernels
over general kernels for the recovery of patterns from noisy inputs. The proof given for the existence of a
minimal representation is constructive and provides a method for the construction of kernels. Although
we established sufficient conditions for the existence of kernels, we have been unable to establish necessary
and sufficient conditions. It is our hope that fellow researchers in this new paradigm of neural computing
will be able to solve this problem in the near future.
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